A New Algorithm for Detecting Cloud Height using OMPS/LP Observations

Zhong Chen, PK Bhartia, Matt DeLand May 7, 2015

Methodology

We use a differential edge detection algorithm. The algorithm assumes that clouds produce a sharper vertical gradient in radiances than aerosols, and that the spectral dependence of radiances is larger for clouds due to their larger particle size.

Cloud Index Ratio is defined as

 $lnR = dlnIm(\lambda_1,z)/dz - dlnIm(\lambda_2,z)/dz$

where Im is the limb radiance as a function of wavelength λ and tangent height z.

The following wavelengths are used:

$$\lambda_1 = 674 \text{ nm}$$

$$\lambda_2 = 868 \text{ nm}$$

Threshold Determination

Global Maps of LP Cloud Height

Comparison between two cloud detection algorithms

Black circle: Old algorithm Red circle: New algorithm

New algorithm uses a differential edge detection technique

Examples of High Clouds in Current LP Product

12/22/2014 – Upper edge of Junge layer in Northern Hemisphere?

Distinction between Clouds and Aerosols

Sensitivity of ASI & InR to volcano eruption on Feb. 13, 2014 at Kelud (Lat = -8°, Lon = 112°)

Comparison between ASI & LP Cloud Height before and after Kelud volcano eruption

Based on one month data (Feb. 1 to Feb. 28, 2014)

ASI

0.51

0.42

0.45

0.48

135

0.54

0.57

Mean InR

Next work

- Evaluate/Validate all 4 years of LP cloud data
- Find an optimum cloud detection threshold
- Find out how often we misidentify aerosol as cloud

Data are available in the TLCF: /omi/live/dd/85398/LP-L2-Cloud/